атипичные кардиомиоциты сердца

Кардиомиоцит

Структурно-функциональной единицей является клетка —кардиомиоцит.

Классификация кардиомиоцитов

По строению и функциям кардиомиоциты подразделяются на две основные группы:

типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;

атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.

Сократительный кардиомиоцит

представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой.

В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии.

В отличие от скелетной мышечной ткани, миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах.

Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублением плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от такового в скелетных мышечных волокнах.

Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть — функциональный синтиций.

Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически, никаких дополнительных структур (диском между кардиомиоцитами нет.

Вставочные диски

— это места контактов цитолеммы соседних кардиомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты. Обычно во вставочных дисках различают поперечный и продольный фрагменты.

В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолемм прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты.

Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Атипичные кардиомиоциты

образуют проводящую систему сердца, состоящую из:

предсердно-желудочковый пучок (пучок Гиса)ствол, правую и левую ножки;

концевые разветвления ножек — волокна Пункинье.

Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты.

По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:

они крупнее (длина 100 мкм, толщина 50 мкм);

в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;

плазмолемма не образует Т-канальцев;

во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:

Р-клетки (пейсмекеры) водители ритма (I типа);

переходные клетки (II типа);

клетки пучка Гиса и волокон Пуркинье (III тип).

Клетки I типа (Р-клетки) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.

Источники развития кардиомиоцитов — миоэпителиальные пластинки, представляющие собой определенные участки висцеральных листков спланхнотома, а конкретнееиз целомического эпителия этих участков.

Иннервация сердечной мышечной ткани

Биопотенциалы сократительные кардиомиоциты получают из двух источников:

из проводящей системы сердца (прежде всего из синусо-предсердного узла);

из вегетативной нервной системы (из ее симпатической и парасимпатической части).

Регенерация сердечной мышечной ткани

Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.

Этот устаревший термин относится к миоцитам, формирующим проводящую систему сердца. Среди них различают водители ритма и проводящие миоциты.

Водители ритма (пейсмейкерные клетки, пейсмейкеры, рис. 7-24) — совокупность специализированных кардиомиоцитов в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Так, в синусно-предсердном узле доля соединительнотканных элементов (включая кровеносные капилляры) в 1,5–3 раза, а нервных элементов (нейроны и двигательные нервные окончания) в 2,5–5 раз выше, чем в рабочем миокарде правого предсердия. Главное свойство водителей ритма — спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся через электрические синапсы по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов.

Спонтанная генерация импульсов потенциальноприсуща не только водителям ритма, но и всем атипичным, а также рабочим кардиомиоцитам. Так, in vitro все кардиомиоциты способны к спонтанному сокращению. В проводящей системе сердца существует иерархия водителей ритма: чем ближе к рабочим миоцитам, тем реже спонтанный ритм.

 Синусно-предсердный узел. Главный водитель ритма — клетки синусно-предсердного узла — локализуется под эпикардом в месте впадения верхней полой вены в правое предсердие, генерирует ритм 60 импульсов в мин. Нормально активность других водителей ритма подавлена. От синусно-предсердного узла импульс распространяется по рабочим кардиомиоцитам правого предсердия, а по переднему, среднему и заднему межузловым трактам достигает предсердно-желудочкового узла. Пучок Бахмана (Bachmann) проводит электрический импульс к рабочим кардиомиоцитам левого предсердия.

 Предсердно-желудочковый узел локализуется в субэндокардиальном слое на правой стороне межпредсердной перегородки около отверстия венечного синуса. В случае нарушения генерации импульсов в синусно-предсердном узле, роль водителя ритма переходит к пейсмекерам предсердно-желудочкового узла, способных генерировать сердечный ритм с частотой 40–50 импульсов в мин.

Рис.7-24. Атипичные кардиомиоциты. А. Водитель ритма синусно-предсердного узла; Б. Проводящий кардиомиоцит пучка Гиса. [17]

Проводящие кардиомиоциты Специализированные клетки пучка Гиса и волокон Пуркинье образуют длинные волокна, выполняющие функцию проведения возбуждения от водителей ритма. При нарушении генерации нормального ритма проводящие кардиомиоциты пучка Гиса способны генерировать до 40 импульсов в мин, а волокна Пуркинье — 20 импульсов в мин.

 Пучок Гиса. Кардиомиоциты этого пучка проводят возбуждение от водителей ритма к волокнам Пуркинье, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена. Проводящие кардиомиоциты пучка Гиса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.

 Волокна Пуркинье. Проводящие кардиомиоциты волокон Пуркинье — самые крупные клетки миокарда. В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинье не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинье.

 Сердечные аритмии — нарушения формирования импульса возбуждения или его проведения.

Дата добавления: 2015-07-07 ; просмотров: 3280 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

название локализация строение функции
Пейсмекерные клетки (Р-клетки) В центре синоатриального узла, немного в АВ-узле Округлой или овальной формы, ядро в центре, органелл мало Водители ритма, спонтанно генерируют потенциалы действия
Переходные клетки По периферии синоатриального узла, в АВ-узле Вытянутые уплощенные клетки, имеется немного миофибрилл Передают возбуждение с Р-клеток на клетки пучков и волокон
Клетки пучков Гса и волон Пуркинье Образуют пучки Гиса и волокна Пуркинье в предсердиях и желудочках, располагаются в основном под эндокардом Длинные уплощенные клетки, похожие на сократительные кардиомиоциты, но они крупнее, в них меньше миофибрилл, митохондрий, рибосом; более активны — аэробные Проводят и передают возбуждение к сократительным кардиомиоцитам

Иннервация сердца. Сердце иннервируется и чувстви­тельными, и эфферентными нервными волокнами. Чувстви­тельные (сенсорные) нервные волокна поступают из 3 источ­ников: 1) дендриты нейронов спинномозговых (спинальных) ганглиев верхнегрудного отдела спинного мозга; 2) дендриты чувствительных нейронов узла блуждающего нерва; 3) ден­дриты чувствительных нейронов интрамуральных ганглиев. Эти волокна заканчиваются рецепторами.

Эфферентными волокнами являются симпатические и парасимпатические нервные волокна, относящиеся к веге­тативной (автономной) нервной системе.

Симпатическая рефлекторная дуга сердца включает цепь, состоящую из 3 нейронов. 1 -й нейрон заложен в спинальном ганглии, 2-й — в латерально-промежуточном ядре спинного мозга, 3-й — в периферическом симпатическом ганглии (верх­нем шейном или зйездчатом).

Ход импульса по симпатической рефлекторной дуге: рецептор, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, аксон 2-го нейрона обра­зует преганглионарное, миелиновое, холинергическое волок­но, контактирующее с дендритом 3-го нейрона, аксон 3-го нейрона в виде постганглионарного, безмиелинового адренергического нервного волокна направляется в сердце и заканчи­вается эффектором, который непосредственно на сократи­тельные кардиомиоциты не воздействует. При возбуждении симпатических волокон частота сокращений увеличивается.

Парасимпатическая рефлекторная дуга состоит из цепи 3 нейронов. 1-й нейрон заложен в чувствительном ганглии блуждающего нерва, 2-й — в ядре блуждающего нерва, 3-й — в интрамуральном ганглии.

Ход импульса по парасимпати­ческой рефлекторной дуге: рецептор 1-го нейрона, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, ак­сон 2-го нейрона образует преганглионарное, миелиновое, холинергическое нервное волокно, которое передает импульс на дендрит 3-го нейрона, аксон 3-го нейрона в виде постган­глионарного безмиелинового, холинергического нервного во­локна направляется к проводящей системе сердца. При воз­буждении парасимпатических нервных волокон частота и сила сердечных сокращений уменьшаются (брадикардия).

Эпикард представлен соединительнотканной основой, покрытой мезотелием (однослойный плоский эпителий целомического типа) — это висцеральный листок, который переходит в париетальный листок — перикард. Перикард то­же выстлан мезотелием. Между эпикардом и перикардом имеется щелевидная полость, заполненная небольшим коли­чеством жидкости, выполняющей смазывающую функцию. Перикард развивается из париетального листка спланхнотома. В соединительной ткани эпикарда и перикарда имеются жировые клетки (адипоциты).

Возрастные изменения сердца. В процессе развития сердца имеют место 3 этапа: 1) дифференцировка; 2) стадия стабилизации; 3) стадия инволюции (обратного развития).

Дифференцировка начинается уже в эмбриогенезе и про­должается сразу после рождения, так как изменяется харак­тер кровообращения. Сразу после рождения закрывается овальное окно между левым и правым предсердием, закрыва­ется проток между аортой и легочной артерией. Это приво­дит к снижению нагрузки на правый желудочек, который подвергается физиологической атрофии, и к повышению нагрузки на левый желудочек, что сопровождается его фи­зиологической гипертрофией. В это время происходит диф­ференцировка сократительных кардиомиоцитов, сопровож­даемая гипертрофией их саркоплазмы за счет увеличения количества и толщины миофибрилл. Вокруг функциональ­ных волокон сердечной мышцы есть тонкие прослойки рых­лой соединительной ткани.

Период стабилизации начинается примерно в 20-летнем возрасте и заканчивается в 40 лет. После этого начинается стадия инволюции, сопровождаемая уменьшением толщины кардиомиоцитов вследствие уменьшения толщины миофи­брилл. Прослойки соединительной ткани утолщаются. Уме­ньшается количество симпатических нервных волокон, в то время как число парасимпатических практически не изме­няется. Это приводит к снижению частоты и силы сокраще­ний сердечной мышцы. К старости (70 лет) уменьшается и количество парасимпатических нервных волокон. Крове­носные сосуды сердца подвергаются склеротическим изме­нениям, что затрудняет кровоснабжение миокарда (мускула­туры сердца). Это называется ишемической болезнью. Ишемическая болезнь может привести к омертвению (некрозу) сердечной мышцы, что называется инфарктом миокарда.

Кровоснабжение сердца обеспечивается венечными арте­риями, которые отходят от аорты. Венечные артерии — это типичные артерии мышечного типа. Особенность этих арте­рий заключается в том, что в субэндотелии и в наружной обо­лочке имеются пучки гладких миоцитов, расположенных продольно. Артерии разветвляются на более мелкие сосуды и капилляры, которые затем собираются в венулы и коронар­ные вены. Коронарные вены впадают в правое предсердие или венозный синус. Следует отметить, что в эндокарде ка­пилляры отсутствуют, так как его трофика осуществляется за счет крови камер сердца.

Репаративаня регенерация возможна только в грудном или в раннем детском возрасте, когда кардиомиоциты спо­собны к митотическому делению. При гибели мышечных во­локон они не восстанавливаются, а замещаются соедини­тельной тканью.

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также
1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
Загрузка...
Adblock
detector